Reactions of Chlorodithioformates and Thiophosgene with Metal Thiosulphonates

By Holger C. HANSEN and ALEXANDER SENNING

(Kemisk Institut, Aarhus Universitet, DK-8000 Åarhus C, Denmark)

Summary Alkyl (aryl) chlorodithioformates (1) react with potassium toluene-p-thiosulphonate (2) to give alkylthio-(arylthio-) thiocarbonyl p-tolylsulphonyl disulphides (4), trithiocarbonate SS-dioxides (5), and hexathioperoxy-dicarbonates (6); in the reaction of thiophosgene with (2), toluene-p-thiosulphonic acid anhydrosulphide (11) is formed.

RECENTLY we have described the thioacylation of metal sulphinates with thiophosgene,¹ thiocarbamoyl chlorides,² and chlorodithioformates,³ and we have also developed an interest in the corresponding reactions of metal thiosulphonates. Equimolar amounts of (1) and (2) were allowed to react in acetonitrile at 0-5 °C. Contrary to

$$\begin{array}{c} -\text{Cl}^{-}\\ \text{RS-C(:S)-Cl} + \text{Ts}S^{-} \longrightarrow [\text{RS-C(:S)-S-Ts}]\\ \textbf{(1)} \quad \textbf{(2)} \quad \textbf{(3)} \end{array} \tag{1}$$

(3)
$$\xrightarrow{+(2), -Ts^{-}} RS-C(:S)-S-S-Ts$$
 (2)
(4)

(1)
$$\xrightarrow{+\text{Ts}^-, -\text{Cl}^-}$$
 RS-C(:S)-Ts (3)
(5)

$$(3) \longrightarrow RS-C(:S)-S-S-C(:S)-SR$$
(4)
(6)

$$(3a) \xrightarrow{-CS_2} Ph-S-Ts$$
(5)
(7a)

a;
$$R = Ph$$

b; $R = Me$
c; $R = PhCH_2$
Ts = p -MeC₆H₄SO₂ throughout.

our expectations none of the primary product (3) [reaction (1)] could be isolated; instead, the secondary product (4) was found together with (5), (6) and, in the case of R = Ph, (7a) [reactions (2)—(5)]. Experimental data:† (4a), yield 30% [based on (1)], yellow crystals, m.p. 103 °C (from ether), m/e 372 (M^+), 328 ($M^+ - CS$), 296 ($M^+ - CS_2$), 217 ($M^+ - C_7H_7SO_2$), i.r. (KBr): $\nu(CS)$ 1075, $\nu(SO_2)$ 1145 and 1337 cm⁻¹, u.v. (cyclohexane), λ_{max} (log ϵ): 249 (4·23) and 304 nm (3·91), ¹³C n.m.r. (CDCl₃): δ 220·5 p.p.m. (C=S); (4b), yield 21%, m.p. 70 °C (from ether); (4c), yield 22%, m.p. 65 °C (from ether).

Compounds (4) were synthesised independently by cooxidation of thioxanthates and (2) with iodine but yields were low [13% for (4c)] [reaction (6)].

RS-C(:S)-S⁻ + (2)
$$\xrightarrow{+I_{2}, -2I^{-}}$$
 (4) + (6) + Ts-S-S-Ts (6)

The polyfunctionality of (4) is interesting since the compounds can be regarded as trithiocarbonates, disulphides, thiosulphonates, and mixed thioacid anhydrosulphides. Preliminary tests have shown that (4a) gives 5-phenylthio-1,2,3,4-thiatriazole with sodium azide, and 1-phenylthiothiocarbonyl morpholine and morpholinium toluene-p-thiosulphonate with morpholine. Cyanide ion replaces toluene-p-sulphinate ion in its reaction with (4a). When (4a) is treated with an equimolar amount of sulphuryl chloride, (1a) and di-p-tolylsulphonyl trisulphide are obtained. Finally, owing to the dienophilicity of the thiocarbonyl group of (4a), a ready Diels-Alder reaction is observed between (4a) and cyclopenta-1,3-diene. Attempts to synthesise (3) according to reactions (7) and (8) were unsuccessful. Nevertheless, it is likely that (3) is the

$$(2) + CS_{2} - // \rightarrow Ts - S - C(:S) - S^{-} + RX \downarrow - X^{-}$$
(7)
(3)

† All compounds exhibited spectroscopic and analytical data consistent with the proposed structure. Yields were not optimised.

$$PhCH_{z}-S-C(:S)-S^{-} + TsCl \xrightarrow{-Cl^{-}} [(3c)] + PhCH_{z}SC(:S)S^{-} \downarrow -Ts^{-}$$

$$(8)$$

$$(6c)$$

primary product of the reaction sequences (2), (4), (5), and (8) but immediately suffers degradation by nucleophiles [reactions (2) and (8)], disproportionation [reaction (4)], or loss of carbon disulphide [reaction (5)]. The existence of compound (3) has also been assumed in a different type of reaction, in which it is postulated as a reactive intermediate.⁴ The mechanism of formation of (6) via (3) is analogous to that proposed for the reactions of arenesulphonyl chlorides with metal ethyl xanthates,⁵ and with dithio acid salts.6

When (2) (2 mol. equiv.) reacted with thiophosgene in acetonitrile, (11) was formed [crude yield 79% based on (2)]. No other product was observed and the use of equimolar amounts gave the same product. Of the possible

$$CSCl_2 + (2) \xrightarrow{-Cl^-} Ts-S-C(:S)-Cl$$
(9)
(8)

$$(8) \xrightarrow{+(2), -Cl^{-}} [Ts-S-C(:S)-S-Ts]$$

$$(9)$$

$$(10)$$

$$(10)$$

$$(11)$$

$$(11)$$

mechanistic pathways in reaction (10) step (10) \rightarrow (11) via the intermediates (9) and (10) is known,⁷ but (11) could also be formed directly from (8) and (2), with CS_2 and Cl⁻ being lost simultaneously.

(Received, 3rd September 1979; Com. 942.)

- ¹ N. H. Nilsson, C. Jacobsen, and A. Senning, Chem. Comm., 1970, 658.
- ² N. H. Nilsson, C. Jacobsen, O. N. Sørensen, N. K. Haunsøe, and A. Senning, *Chem. Ber.*, 1972, 105, 2854.
 ³ N. H. Nilsson and A. Senning, *Chem. Ber.*, 1974, 107, 2345.
- ⁴ A. Senning, Angew. Chem., submitted for publication.
- G. Bulmer and G. G. Mann, J. Chem. Soc., 1945, 680.
 S. Kato, T. Kato, T. Kataoka, and M. Mizuta, Internat. J. Sulfur Chem., 1973, 8, 437.
- ⁷S. Hayashi, M. Furukawa, J. Yamamoto, and K. Hamamura, Chem. and Pharm. Bull. (Japan), 1967, 15, 1310.